

Formative Evaluation

ProREG -Professional Education for Renewable Energies in Ghana.

October 2024

Formative Evaluation

ProREG - Professional Education for Renewable Energies in Ghana.

October 2024

Your contacts:

Dr. Benjamin Höhne – <u>bh@evoltas.de</u>

Prof. Owusu Amponsah – <u>o.amponsah.cap@knust.edu.gh</u>

Submission date: Version 1.3 - 13/12/2024

<u>Cover Photo</u>: Photo by <u>Getty Images</u> for <u>Unsplash+</u>

Table of Contents

Executive Summary	3
Introduction	4
Project Overview	4
Objectives and Context	4
Scientific Problem Addressed	4
Project Framework	4
Evaluation Intention	5
Methodology	6
Introduction to the Evaluation Methodology	6
Evaluation Framework	6
Methods and Tools	6
Evaluation Criteria and Metrics	7
Results	9
Summary of the main results	9
Evaluation of the Project's Strengths and Weaknesses	10
Perspectives of the Different Stakeholder Groups	11
Impact Assessment	14
Contribution to the Field of Study and Application	14
Broader Societal, Environmental, and Technological Impacts	14
Conclusion	15
Recommendations	16
Suggestions for Improvement	16
Lessons Learned from the Evaluation	17
Conclusion	18
Achievement of Objectives	18
Key Strengths	18
Challenges and Shortfalls	18
Final Remarks	18

Executive Summary

The "Professional Education for Renewable Energy in Ghana (ProREG)" project, spearheaded by the Technical University of Berlin, aims to enhance professional education in renewable energy engineering within Ghana by aligning academic training with industry demands and employing innovative teaching methodologies. Collaborating with the Kwame Nkrumah University of Science and Technology (KNUST), the University of Energy and Natural Resources (UENR), and various corporate partners, the project addresses the gap between theoretical knowledge and practical skills among graduates, who often require extensive on-the-job training, thus delaying their contributions to the sector.

ProREG emphasizes problem-based learning (PBL), enabling students to tackle real-world energy challenges, thereby promoting critical thinking and entrepreneurial skills. The evaluation of this initiative employs a mixed-methods approach, assessing the relevance, effectiveness, efficiency, impact, and sustainability of the project through document analysis, stakeholder interviews, surveys, field observations, and case studies.

The results indicate significant advancements, including the development of practical curricula that incorporate hands-on projects, training for lecturers in modern pedagogical techniques, and strengthened industry-academia collaboration. Feedback from stakeholders—coordinators, lecturers, deans, and students—highlights improvements in teaching effectiveness, student engagement, and skills development. However, challenges such as delayed project initiation, resource constraints, and variability in institutional readiness were noted.

The project's impact extends beyond education, contributing to the broader societal and environmental goals of Ghana by reducing the skills gap in the renewable energy sector and promoting sustainable practices. Recommendations for improvement include strengthening industry collaboration, enhancing resource allocation, and ensuring the sustainability of developed modules. The ProREG project demonstrates the potential of innovative educational models to address systemic challenges in higher education and renewable energy, serving as a replicable framework for similar initiatives.

Introduction

Project Overview

The "Professional Education for Renewable Energy in Ghana (ProREG)" project, led by the Technical University of Berlin, aims to enhance professional education in renewable energy engineering within Ghana, focusing on practical, industry-relevant learning. The project involves partnerships with the Kwame Nkrumah University of Science and Technology (KNUST), the University of Energy and Natural Resources (UENR), and corporate partners.

Objectives and Context

ProREG seeks to address two primary challenges:

- Limited alignment between academic training and industry requirements in Ghana's renewable energy sector.
- A need for innovative teaching methodologies to improve student readiness for immediate integration into the labor market.

Based on the aforementioned challenges, the key project objectives include:

- 1. Integrating new practice-relevant modules into university curricula to bridge the gap between education and industry demands.
- 2. Training university faculty in modern, agile, and practice-oriented teaching methods.
- 3. Establishing an international network to facilitate collaboration among experts, academics, and businesses in renewable energy.

Scientific Problem Addressed

The project tackles the disparity between theoretical knowledge and practical skills among renewable energy graduates in Ghana. Historically, graduates required extensive on-the-job training, delaying their productive contribution to the renewable energy sector. This lack of immediate applicability in a rapidly expanding field posed significant barriers to Ghana's energy transition efforts.

Project Framework

The innovative core of ProREG is its emphasis on practical, problem-based learning (PBL) specifcally applying the appraoch of action-based agile learning. This framework allows students to work on real-world energy challenges, encouraging critical thinking and solutions-oriented approaches. Through agile learning and industry collaboration, the project aims to develop a curriculum that reflects labor market needs while also fostering entrepreneurial thinking.

Evaluation Intention

This evaluation seeks to:

- Assess the degree to which ProREG has achieved its objectives.
- Examine the project's implementation, including its educational innovations and stakeholder collaboration.
- Provide evidence-based recommendations for future iterations or expansions of the project.

These recommendations are meant to:

- 1. inform the last phase of the project implementation
- 2. and future iterations or expansions of the project.

By analyzing the project's outcomes and impact, the evaluation will contribute to understanding its role in advancing renewable energy education and its broader implications for sustainable development in Ghana.

Methodology

Introduction to the Evaluation Methodology

The evaluation of the ProREG project adopts a mixed-methods approach. This methodology reflects the complexity of evaluating a multidisciplinary project aiming to reform renewable energy education through enhanced practical relevance and integration of innovative teaching strategies. The methodology is structured to assess the project's objectives, outcomes, and impacts comprehensively.

Evaluation Framework

The evaluation was guided by the following themes:

- Relevance: Assessing the alignment of project activities and outputs with the educational needs in renewable energy and industry demands.
- <u>Effectiveness</u>: Determining the extent to which the planned project objectives have been achieved up to the period of the evaluation.
- <u>Efficiency</u>: Evaluating the resource utilization efficiency and implementation strategies.
- Impact: Measuring the broader societal and educational implications of the project.
- <u>Sustainability</u>: Understanding the project's potential for long-term integration into institutional practices.

Methods and Tools

Document Analysis

- Reviewed the ProREG project description, interim reports, and associated documentation to identify project goals, outputs, and implementation progress.
- Examined curricular changes, teaching materials, and structural adjustments documented by the partner universities.

Stakeholder Interviews

Conducted qualitative interviews with key stakeholders including provosts, deans, institute directors, lecturers, coordinators, students, and industry partners. These interviews aimed to capture diverse perspectives on the project's implementation, challenges, and successes.

Surveys and Feedback Forms

Administered surveys to participating students and lecturers to quantify their experiences with the project's innovative methodologies such as project-based learning (PBL) and agile teaching formats.

Field Observations

Observed practical student projects and their interactions with industry partners to evaluate the application of theoretical knowledge and practical skills.

Case Studies

Analyzed select student projects as case studies, including those on carbon footprint analysis and agrivoltaic solutions, to understand the practical implications and depth of learning facilitated by the project.

Evaluation Criteria and Metrics

Pedagogical Impact

- Number of lecturers trained in agile and project-based teaching methodologies.
- Degree of integration of practical modules into curricula.
- Feedback on teaching effectiveness and student engagement.

Relevance

Assessing the alignment of project activities and outputs with the educational needs in renewable energy and industry demands.

Impact

Measuring the broader societal and educational implications of the project.

Replication & catalytic effects

- Some lecturers have adopted PBL and industry-relevant projects in their individual courses.
- Some earlier projects had treated some of the lecturers to PBL, thereby enhancing the effects of ProREG.

Student Outcomes

- Improvements in problem-solving, research, and technical skills as self-reported by students and observed in projects.
- Employment-readiness indicators, including internships and collaboration with industries.

Institutional Integration

- Structural changes such as new module accreditation and partnerships with industries.
- Establishment of networks for continued collaboration among academic and industry stakeholders.

Resource Allocation and Efficiency

Comparison of financial inputs versus outputs such as the quality and reach of developed curricula.

Sustainability Metrics

- Plans for institutionalizing the developed modules and training frameworks beyond the project lifecycle.
- Level of engagement from industry partners to sustain practical learning opportunities.

Data Analysis

- Qualitative data from interviews and case studies were coded thematically to identify recurring themes and unique insights.
- Quantitative data from surveys were analyzed using descriptive and inferential statistics to draw conclusions on stakeholder experiences and project outcomes.
- Comparative analysis was employed to contrast activities and outcomes between the two partner universities, KNUST and UENR.

Ethical Considerations

- Ensured informed consent from all participants.
- Maintained confidentiality of interview and survey responses.
- Aligned evaluation activities with institutional ethical guidelines.

Limitations

- Time constraints due to the late start of the project posed challenges in gathering longitudinal data.
- Limited access to certain project participants and logistical hurdles in coordinating with external industry partners.

This methodology provides a robust foundation for assessing the ProREG project's effectiveness and offers insights for improvements in the remaining year of project implementation and for future improvements in similar educational initiatives.

Results

Summary of the main results

The ProREG project successfully introduced significant reforms in renewable energy education in Ghana. These outcomes reflect the integration of practical relevance, innovative teaching methods, and stronger collaborations between academic institutions and industry.

Development of Practical Curricula

- New practice-oriented modules in renewable energy were designed and implemented at KNUST and UENR. These modules incorporated real-world problems and required students to apply theoretical knowledge in hands-on projects.
- Examples include projects focusing on carbon footprint analysis, agri-voltaic systems, and the reliability of solar components in Ghana.

Training and Capacity Building

- Lecturers and academic staff received training in agile and project-based learning methodologies. This enhanced their ability to design and facilitate student-centered learning experiences.
- Over 80% of interviewed lecturers reported an increase in their pedagogical skills, emphasizing enhanced student engagement and practical problem-solving approaches.

Industry-Academia Collaboration

- The project fostered partnerships with companies like Bui Power Authority, Tino Solutions, and Greentech Biogas Engineering Services, allowing students to engage with real industrial challenges.
- Collaborative seminars and workshops enabled direct interactions between students, lecturers, and industry representatives to co-design project topics.

Student Skill Development

- Students demonstrated improved problem-solving, technical, and teamwork skills, as evidenced by their ability to complete complex projects with minimal supervision.
- Feedback from students highlighted the applicability of the skills gained for future professional opportunities in the renewable energy sector.

Institutional Impact

- The ProREG project acted as a catalyst for institutional changes, such as incorporating project-based modules into the formal curriculum. This progress was observed at both partner universities.
- The collaboration also paved the way for developing additional study programs, including specialized tracks in renewable energy technologies.

Evaluation of the Project's Strengths and Weaknesses

Strengths

Relevance to Local Needs

- The project addressed the critical gap between academic training and industry requirements by integrating labor market-relevant skills into curricula.
- Focus areas such as agri-voltaic systems and carbon management directly align with Ghana's renewable energy goals.

Innovative Pedagogy

- Adoption of project-based and agile learning approaches transformed traditional lecture-centric methods into more engaging, practical formats.
- Students reported higher engagement and understanding when solving real-world problems, which strengthened their methodological and technical competencies.

Capacity Building for Faculty

- The training programs for lecturers enhanced their capability to deliver and design courses using innovative pedagogical techniques.
- Faculty also gained valuable insights into structuring collaborative projects with industry partners.

Strengthened Networks

- The project facilitated stronger institutional relationships between KNUST, UENR, and industry stakeholders, creating a framework for future collaboration.
- International partnerships, including study tours to Germany, broadened the scope of expertise and exposed participants to global best practices.

Student Empowerment

Enhanced student autonomy and leadership in project execution were observed.
 Students worked independently to collect data, engage with stakeholders, and present findings, reinforcing critical professional skills.

Weaknesses

Delayed Project Start

- Administrative delays at the project's inception caused a time crunch, impacting the initial implementation of activities.
- Some intended outcomes, such as establishing deeper ties with all intended industry partners, were not fully realized within the project's timeframe.

Resource Constraints

- Limited availability of academic staff and facilitators led to increased workloads for existing personnel, which occasionally hindered smooth execution.
- The financial and logistical support for certain practical activities, such as field trips, was challenging to manage effectively within the project budget.

Variability in Institutional Readiness

 Differences in institutional frameworks between KNUST and UENR affected the uniformity of project implementation. For instance, UENR's greater autonomy facilitated faster curriculum integration, whereas structural limitations at KNUST caused delays.

Student Access Challenges

 While group projects fostered collaboration, disparities in group member availability (e.g., students balancing work commitments) occasionally led to uneven workload distribution.

Limited Direct Industry Problem Solving

 Many student projects remained at the case study level rather than implementing solutions directly for industry partners, primarily due to time and expertise limitations.

These findings establish that ProREG achieved significant progress in reforming renewable energy education in Ghana. However, addressing the identified weaknesses will enhance the project's long-term impact and replicability. The next section will detail stakeholder perspectives to further elaborate on these findings.

Perspectives of the Different Stakeholder Groups

The ProREG project engaged various stakeholders who provided unique insights into its implementation, successes, and challenges. Their perspectives highlight the multifaceted impact of the project and areas for future improvement.

Coordinators' Perspectives

Strengthened Collaboration

- Coordinators expressed satisfaction with the project's role in fostering collaboration between academic institutions and industry. This was evident in initiatives like workshops where industry representatives presented real-world problems for student projects.
- The international aspect of the project, such as study tours to Germany, was valued for exposing participants to global educational practices and creating an extended network of expertise.

Administrative Challenges

- A recurring concern among coordinators was the delayed start of the project, attributed to logistical and administrative hurdles at the Technical University of Berlin. This delay compressed timelines for project execution, particularly in setting up initial partnerships and conducting preliminary workshops.
- Coordinators at KNUST highlighted structural constraints that limited their autonomy in adapting the curriculum, contrasting with UENR's greater institutional flexibility.

Capacity Building Outcomes

 Coordinators reported significant improvements in their own professional competencies, particularly in managing multidisciplinary educational projects. This was attributed to training and exposure to innovative teaching methodologies.

Lecturers' Perspectives

Teaching Innovation

- Lecturers acknowledged the transformative impact of the ProREG project on their teaching methodologies. Training sessions on project-based learning (PBL) and agile formats enabled them to transition from traditional lecture-based teaching to more interactive, student-centered approaches.
- Many lecturers reported that the shift to a facilitator role enhanced their engagement with students and improved learning outcomes, although it required significant effort to adapt.

Workload Concerns

- The increased workload for lecturers was a major challenge. Managing both traditional courses and project-based modules simultaneously stretched resources, particularly in departments with limited staff.
- Despite these challenges, lecturers expressed a strong willingness to continue using PBL formats, citing the visible benefits to students' skills and engagement.

Project Design and Support

- Lecturers appreciated the opportunity to co-create project assignments with students and industry partners. However, some felt that the projects' scope occasionally exceeded students' capabilities, requiring additional guidance and support.
- Support from industry partners was seen as inconsistent, with some partners actively involved in project design while others provided minimal engagement.

Deans' Perspectives

Institutional Integration

- Deans highlighted the alignment of the ProREG project with their universities' strategic goals, particularly in fostering labor market-relevant education and promoting renewable energy expertise.
- At UENR, the project was seen as a catalyst for developing new postgraduate programs, including specialized tracks in renewable energy technologies.

Sustainability and Scaling

 Deans expressed optimism about the project's sustainability, emphasizing the institutionalization of developed modules as part of regular curricula. They suggested that embedding PBL and industry collaboration into broader university frameworks would enhance long-term impact.

Resource Needs

Deans identified resource constraints as a critical barrier to scaling project initiatives.
 They recommended hiring additional staff and investing in infrastructure to accommodate the growing demand for practical learning.

Students' Perspectives

Skill Development

- Students unanimously agreed that the ProREG project significantly enhanced their technical, problem-solving, and teamwork skills. Projects like carbon footprint analysis and agri-voltaic systems provided hands-on experience that directly complemented theoretical knowledge.
- Many students felt better prepared for professional roles, with some emphasizing the potential of these projects to improve their resumes and employability.

Challenges in Group Dynamics

 Mixed-level groups (MSc and PhD students) fostered knowledge exchange but occasionally resulted in uneven workload distribution. Full-time students often had to compensate for group members with work commitments.

Motivation and Engagement

- Students found the practical nature of the assignments highly motivating. They
 appreciated the autonomy to choose project topics and the relevance of these projects
 to real-world challenges.
- However, some students noted difficulties in accessing sufficient resources or industry support for their projects, highlighting a need for better coordination with external partners.

Future Prospects

 Many students expressed enthusiasm about pursuing careers in renewable energy, citing the project as a pivotal factor in shaping their aspirations and readiness for the labor market.

Cross-Stakeholder Reflections

Collaborative Gains

 Across stakeholder groups, there was a shared recognition of the project's success in bridging the gap between academia and industry. ProREG's emphasis on practical learning was seen as a model for addressing systemic challenges in higher education.

Areas for Improvement

- While stakeholders acknowledged the project's achievements, they highlighted the need for better planning and resource allocation to sustain and scale its initiatives effectively.
- Enhanced communication and consistent involvement of all stakeholders, particularly industry partners, were deemed crucial for future iterations of the project.

Impact Assessment

Contribution to the Field of Study and Application

Advancement of Renewable Energy Education:

The ProREG project significantly enhanced the practical relevance of renewable energy education in Ghana. By integrating project-based learning (PBL) and agile teaching methodologies, it bridged the gap between theoretical knowledge and real-world applications.

Newly developed modules, such as those addressing carbon footprint analysis and agrivoltaic systems, provided students with hands-on experience in solving current renewable energy challenges. These modules are now part of the formal curriculum at KNUST and UENR, setting a precedent for other institutions.

Pedagogical Innovations

The project introduced sustainable teaching practices by training lecturers in interactive, student-centered methods. This initiative enhanced teaching quality and encouraged faculty to adopt active facilitation roles, enriching the learning experience for students.

ProREG's approach serves as a replicable model for reforming STEM education in Ghana and potentially across Sub-Saharan Africa, where similar gaps in practical skills exist.

Industry-Academia Linkages

Stronger collaborations between universities and industries, such as partnerships with Tino Solutions and Bui Power Authority, enhanced the relevance of academic research and project work.

These partnerships fostered knowledge exchange and exposed students to industry-specific challenges, preparing them for seamless integration into the workforce.

Catalyst for New Programs

The project inspired the creation of new postgraduate programs at UENR, including specialized tracks in renewable energy technologies like solar, hydro, and wind energy. These programs expand opportunities for advanced study and research in renewable energy.

Broader Societal, Environmental, and Technological Impacts

Societal Impact

By equipping students with practical, industry-relevant skills, ProREG contributes to reducing the skills gap in Ghana's renewable energy sector. This, in turn, supports national efforts to build a robust workforce capable of addressing energy challenges.

Enhanced employability of graduates not only benefits individuals but also strengthens the economic resilience of their communities.

Environmental Impact

The emphasis on sustainability-focused projects, such as agri-voltaic systems and carbon footprint analysis, promotes awareness and actionable solutions for mitigating environmental challenges.

ProREG's practical assignments have demonstrated measurable benefits, such as evaluating energy efficiency in institutional buildings and exploring sustainable land use practices, which could inform broader environmental policies.

Technological Impact

Student projects under ProREG have resulted in innovative applications of renewable energy technologies, such as hybrid models combining solar power with agricultural practices. These solutions demonstrate the potential for scalable interventions in renewable energy.

The integration of data collection and analysis into practical assignments has improved students' familiarity with industry-standard tools and methodologies, fostering a techsavvy workforce.

Institutional and Policy-Level Changes

The project's success has sparked discussions on broader educational reforms, emphasizing the integration of practical modules and industry partnerships into curricula. This influence extends beyond the participating universities, potentially shaping national education policies.

Collaboration with governmental and industry stakeholders, such as the Energy Commission in Ghana, aligns the educational outcomes of ProREG with national renewable energy goals.

Conclusion

The ProREG project has made a transformative impact on renewable energy education and its application in Ghana. By aligning academic outputs with industry needs and national priorities, the project has established a foundation for sustainable growth in the renewable energy sector. Its contributions extend beyond the academic domain, fostering environmental stewardship, technological innovation, and societal development.

Recommendations

Suggestions for Improvement

Strengthening Industry Collaboration

Expand Engagement: Broaden the range of industry partners and deepen existing collaborations to ensure consistent support for student projects. Regularly scheduled industry-student workshops and mentorship programs can enhance practical learning.

Structured Involvement: Develop frameworks for industry partners to actively participate in defining project scopes, providing resources, and evaluating outcomes. This will align student work more closely with real-world needs.

Enhancing Resource Allocation

Increase Staffing: Address faculty shortages by recruiting more facilitators, particularly those trained in project-based learning methodologies. This will reduce workloads and maintain teaching quality.

Infrastructure Development: Invest in labs, tools, and technologies that support renewable energy studies. Accessible and well-equipped facilities are critical for scaling practical modules.

Improving Curriculum Integration

Institutionalize Modules: Ensure that project-based modules are formally embedded within the curriculum. Accreditation and recognition of these modules can enhance their sustainability and appeal.

Iterative Refinement: Incorporate feedback loops to continuously improve modules based on student and industry partner input. Regular curriculum reviews can ensure relevance and adaptability to evolving challenges.

Expanding Training and Support

Faculty Development: Offer ongoing training sessions for faculty to keep them updated on emerging pedagogical approaches and renewable energy trends.

Student Support Systems: Establish structured mentorship and guidance mechanisms to assist students in navigating complex projects and balancing workloads within group settings.

Addressing Logistical and Administrative Barriers

Early Planning: Initiate administrative processes well before project start dates to avoid delays in execution. Streamlined workflows for approvals and resource allocation are crucial.

Monitoring Systems: Implement comprehensive tracking and evaluation systems to monitor progress and identify bottlenecks early. This ensures timely corrective actions and accountability.

Lessons Learned from the Evaluation

The Power of Practical Learning

ProREG demonstrated that integrating real-world problems into academic learning significantly enhances student engagement and skill acquisition. The case-study approach combined with fieldwork proved effective in bridging theoretical knowledge with practical application.

Importance of Stakeholder Buy-In

Active participation from all stakeholders—universities, industries, and government agencies—is critical for the success of such projects. Building trust and clear communication channels ensures alignment of goals and sustained collaboration.

Adaptability and Flexibility

The variability in institutional readiness between KNUST and UENR highlighted the need for adaptable strategies that cater to specific institutional contexts. Flexible project designs can help accommodate these differences.

Value of Continuous Training

Regular training sessions for lecturers were pivotal in shifting teaching paradigms. However, ongoing capacity-building efforts are necessary to reinforce and expand these changes.

Challenges of Group Dynamics

Mixed-level student groups encouraged knowledge-sharing but also presented challenges in workload distribution. Clearer guidelines for group roles and responsibilities can mitigate such issues and enhance collaboration.

Need for Scalable Models

The project's success suggests its potential scalability to other institutions and regions. Establishing a replicable framework that includes standardized modules, training protocols, and industry engagement strategies can amplify its impact.

Focus on Sustainability

Ensuring long-term impact requires embedding project outcomes into institutional systems, such as formal curricula and administrative frameworks. Proactive measures, like accrediting new modules and securing recurrent funding, are essential for sustainability.

Conclusion

The ProREG project has been a transformative initiative in addressing critical gaps in renewable energy education in Ghana. Its innovative approach, which combined project-based learning (PBL), agile teaching methodologies, and strong industry-academia collaborations, has brought significant advancements to the field.

Achievement of Objectives

Practical Learning Modules: The project successfully integrated practice-relevant modules into the curricula of KNUST and UENR. These modules addressed industry-specific challenges, enhancing the employability and readiness of graduates for the renewable energy sector.

Faculty Training: A significant number of lecturers were trained in modern pedagogical techniques, equipping them to deliver and facilitate student-centered learning experiences.

Industry Partnerships: The project established and strengthened collaborations with key industry players, such as Bui Power Authority and Tino Solutions, creating valuable opportunities for student engagement with real-world challenges.

Key Strengths

The project demonstrated the effectiveness of experiential learning in fostering technical skills, problem-solving abilities, and professional readiness among students. By acting as a catalyst for curriculum reform, ProREG contributed to long-term institutional change, including the development of new postgraduate programs at UENR.

Challenges and Shortfalls

Administrative delays at the start of the project compressed timelines and limited the full realization of certain planned activities. While industry partnerships were established, the depth and consistency of engagement varied, highlighting the need for more structured collaboration frameworks.

Overall, ProREG met its core objectives by enhancing the quality and relevance of renewable energy education, empowering faculty and students, and fostering collaborations that align academic outputs with industry needs.

Final Remarks

The ProREG project underscores the potential of innovative educational models to address systemic challenges in higher education and renewable energy. Its contributions extend beyond the immediate academic context to include broader societal and environmental impacts.

Significance of the Project

For Ghana: ProREG aligns with national priorities to expand renewable energy capacity and build a skilled workforce, directly contributing to Ghana's sustainable development goals.

For Education: The project has set a precedent for integrating practice-oriented approaches into STEM education, offering a replicable model for other institutions in Sub-Saharan Africa and beyond.

Areas for Further Research

Scaling and Replicability: Future research could focus on adapting ProREG's framework to other universities and regions, considering local contexts and challenges.

Long-Term Impact: Studies tracking the career trajectories of graduates and the institutionalization of ProREG modules will provide valuable insights into the project's sustained impact.

Industry Engagement Models: Further exploration is needed to develop structured mechanisms for deeper and more consistent industry collaboration.

Emerging Opportunities

The project has catalyzed interest in renewable energy technologies, opening avenues for targeted research in areas such as hybrid energy systems, sustainable land use, and energy-efficient infrastructure.